[Total No. of Questions - 9] [Total No. of Printed Pages - 4] (2125)

15092

B. Tech 4th Semester Examination Structural Analysis-I (OS) CE-4001

Time: 3 Hours Max. Marks: 100

The candidates shall limit their answers precisely within the answerbook (40 pages) issued to them and no supplementary/continuation sheet will be issued.

Note: Candidates are required to attempt five questions in all selecting one question from sections A, B, C, D and all the subparts of question in section E.

SECTION - A

- (a) Define Castigliano's 1st theorem. Explain where is it used? (2+2=4)
 - (b) Find the horizontal deflection at joint C of the pin-jointed frame as shown in Fig. (1). AE is constant for all members. (16)

2. (a) Define complementry energy.

(4)

[P.T.O.]

2 15092

(b A simply supported beam of length L carries a concentrated load W at a point C as shown in Fig. 2. Find expressions for the total strain energy of the beam and the deflection under load. (16)

SECTION - B

 Analyse the continuous beam shown in Fig. 3 by slopedeflection method. Draw the bending moment and shear force diagrams. Young's modulus is same throughout. (20)

 Analyse the frame shown in Fig. 4 by moment distribution method and draw the bending moment diagram. Young's modulus is same throughout. (20)

Fig. 4

15092

3 SECTION - C

- (a) A two hinged parabolic arch of span L and rise h carries a concentrated load W at the crown, determine the horizontal thrust at each support. (10)
 - (b) A parabolic two hinged parabolic arch of span 32 m has a rise of 5 m. The arch carries point load of 10 kN, 5 m from the right support. Determine support horizontal thrust at the supports. (10)
- 6. (a) Define shear centre. (4)
 - (b) Determine the principal moments of inertia for an unequal angle section 100mm x 75mm x 8mm. (16)

SECTION - D

- 7. (a) What is a suspension bridge?
 - (b) Write the key advantages of the cable-stayed form of bridges.
 - (c) A suspension cable has a span of 120 m and central dip of 12 m. It carries a uniform load of 1kN/m on the entire span. Calculate the maximum and minimum tension in the cable. (4+4+12=20)
- 8. A suspension bridge of 100 m span has two-hinged stiffening girders supported by two cables, having a central dip of 10m. The dead load on the bridge is 5 kN /m² and live load 10 kN/m², which covers the left half of the span. If the road is 7.5 m wide, determine the
 - shear force and bending moment for the girder at 25 m from the left end and
 - (ii) maximum tension in the cable. (20)

[P.T.O.]

4 15092

SECTION - E

- 9. Briefly answer all the following questions:
 - (a) What is meant by indeterminate structures?
 - (b) Define degree of indeterminacy.
 - (c) Write the formulae for degree of indeterminacy for:
 - (i) Two dimensional pin-jointed truss (2D Truss)
 - (ii) Two dimensional rigid frames/plane rigid frames (2D Frames)
 - (d) Find the indeterminacy for the beams given below.

- (e) Differentiate between pin-jointed and rigid jointed plane frames.
- (f) Give the expression for determining the tension T in a cable of a suspension bridge.
- (g) Define influence line.
- (h) What are the functions of stiffening girders in suspension bridges?
- (i) Explain briefly the advantages of the suspension bridges.
- (j) What are different types of arches? (10×2=20)